22. Parametric Surfaces and Surface Integrals
d. Applications of Scalar Surface Integrals
3. Centroid
The centroid of a surface is the point, \((\bar{x},\bar{y},\bar{z})\), whose coordinates are the average values of \(x\), \(y\) and \(z\) on the surface: \[ (\bar{x},\bar{y},\bar{z}) =\left(\dfrac{A_x}{A},\dfrac{A_y}{A},\dfrac{A_z}{A}\right) \] where the moments of the area are: \[ A_x=\iint_S x\,dS \qquad A_y=\iint_S y\,dS \qquad A_z=\iint_S z\,dS \]
Note: The centroid can also be regarded as the center of mass when the region has a constant density, which can be taken as \(\delta=1\).
Find the height of the centroid of the surface of
the piece of the sphere, \(S\), with \(\rho=3\) for which
\(0<\phi<\dfrac{\pi}{2}\) and \(0< \theta<\dfrac{\pi}{4}\).
PY: Plot the surface not the solid.
The first step is to parameterize the sphere in spherical coordinates with \(\rho=3\): \[ \vec R(\phi,\theta) =\left\langle 3\sin\phi\cos\theta,3\sin\phi\sin\theta,3\cos\phi\right\rangle \] Next, the normal vector is the cross product of the tangent vectors: \[\begin{aligned} \vec{N}&=\vec{e}_\phi\times\vec{e}_\theta= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 3\cos\phi\cos\theta & 3\cos\phi\sin\theta & -3\sin\phi \\ -3\sin\phi\sin\theta & 3\sin\phi\cos\theta & 0 \end{vmatrix} \\ &=\hat{\imath}(--9\sin^2\phi\cos\theta) -\hat{\jmath}(-9\sin^2\phi\sin\theta) \\ &\qquad+\hat{k}(9\sin\phi\cos\phi\cos^2\theta--9\sin\phi\cos\phi\sin^2\theta) \\ &=\left\langle 9\sin^2\phi\cos\theta,9\sin^2\phi\sin\theta,9\sin\phi\cos\phi\right\rangle \end{aligned}\] Then the magnitude of the normal is: \[\begin{aligned} |\vec{N}|&=\sqrt{81\sin^4\phi\cos^2\theta +81\sin^4\phi\sin^2\theta+81\sin^2\phi\cos^2\phi} \\ &=9\sin\phi\sqrt{\sin^2\phi\cos^2\theta+\sin^2\phi\sin^2\theta+\cos^2\phi} \\ &=9\sin\phi\sqrt{\sin^2\phi(\cos^2\theta+\sin^2\theta)+\cos^2\phi}=9\sin\phi \end{aligned}\] So the surface area differential is: \[ dS=|\vec{N}|\,du\,dv=9\sin\phi\,d\phi\,d\theta \] We are now ready to compute the surface area of the piece of the sphere: \[\begin{aligned} A&=\iint_S \,dS =\int_0^{\pi/4}\int_0^{\pi/2} 9\sin\phi\,d\phi\,d\theta \\ &=9\left[\theta\dfrac{}{}\right]_0^{\pi/4}\left[-\cos\phi\dfrac{}{}\right]_0^{\pi/2} =9\dfrac{\pi}{4}(0-(-1)) =\dfrac{9\pi}{4} \end{aligned}\]
This is correct because it is \(\dfrac{1}{16}\) of the surface of the sphere: \[ A=\dfrac{1}{16}\left(4\pi R^2\dfrac{}{}\right) =\dfrac{1}{16}\left(4\pi3^2\dfrac{}{}\right)=\dfrac{9\pi}{4} \]
Now, finding the height of the centroid means finding \(\displaystyle \bar{z}=\dfrac{A_z}{A}\). The numerator is the \(z\)-moment: \[\begin{aligned} A_z&=\iint_S z\,\,dS =\int_0^{\pi/4}\int_0^{\pi/2} 3\cos\phi\cdot9\sin\phi\,d\phi\,d\theta \\ &=27\left[\theta\dfrac{}{}\right]_0^{\pi/4}\left[\dfrac{\sin^2\phi}{2}\right]_0^{\pi/2} =27\dfrac{\pi}{4}\left(\dfrac{1}{2}-0\right) =\dfrac{27\pi}{8} \end{aligned}\] Finally, the height of the centroid is: \[ \bar{z}=\dfrac{A_z}{A}=\dfrac{27\pi}{8}\dfrac{4}{9\pi}= \dfrac{3}{2} \]
This is reasonable because the radius of the sphere was \(3\).
Find the centroid of the piece of the elliptic paraboloid \(z=x^2+y^2\) below \(z=4\). The length of the normal vector and the surface area were found in previous exercises.
\(\displaystyle \left(\bar x,\bar y,\bar z\right)_\text{centroid} =\left( 0,0,\dfrac{23\cdot17^{3/2}+1}{10(17^{3/2}-1)}\right) \approx(0,0,2.33)\)
The paraboloid is parametrized by: \[ \vec R(r,\theta) =\left\langle r\cos\theta,r\sin\theta,r^2\right\rangle \] the length of the normal is: \[ |\vec N|=r\sqrt{4r^2+1} \] and the area is: \[ A=\int_0^{2\pi}\int_0^2 r\sqrt{4r^2+1}\,dr\,d\theta =\dfrac{\pi}{6}\left(17^{3/2}-1\right) \approx36.2 \] By symmetry, \(\bar x=\bar y=0\). So we need the \(z\) component: \[ \bar z=\dfrac{A_z}{A} \] We compute the \(z\) moment of the area: \[ A_z=\iint_S z\,dS =\int_0^{2\pi}\int_0^2 (r^2)r\sqrt{4r^2+1}\,dr\,d\theta \] Again, we make the substitution \(u=4r^2+1\) and \(du=8r\,dr\). Then \(r^2=\dfrac{u-1}{4}\) and so: \[\begin{aligned} A_z &=\dfrac{\pi}{4}\int_1^{17} \dfrac{u-1}{4}\sqrt{u}\,du =\dfrac{\pi}{16}\int_1^{17} (u^{3/2}-u^{1/2})\,du \\ &=\dfrac{\pi}{16}\left[\dfrac{2u^{5/2}}{5}-\dfrac{2u^{3/2}}{3}\right]_1^{17} \\ &=\dfrac{\pi}{16}\left(\dfrac{2\cdot17^{5/2}}{5}-\dfrac{2\cdot17^{3/2}}{3} -\dfrac{2}{5}+\dfrac{2}{3}\right) \\ &=\dfrac{\pi}{8}\left(\dfrac{17\cdot17^{3/2}}{5}-\dfrac{17^{3/2}}{3} -\dfrac{1}{5}+\dfrac{1}{3}\right) \\ &=\dfrac{\pi}{120}\left(3\cdot17\cdot17^{3/2}-5\cdot17^{3/2} -3+5\right) \\ &=\dfrac{\pi}{60}\left(23\cdot17^{3/2}+1\right) \approx84.5 \end{aligned}\] Consequently, the \(z\) component of the centroid is: \[\begin{aligned} \bar z&=\dfrac{A_z}{A} =\dfrac{(23\cdot17^{3/2}+1)\pi}{60}\dfrac{6}{(17^{3/2}-1)\pi} \\ &=\dfrac{23\cdot17^{3/2}+1}{10(17^{3/2}-1)} \approx2.33 \end{aligned}\]
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum